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FOREWORD

On 1 May 1982, Flow Research Company was awarded a one year contract from

the Air Force Office of Scientific Research to investigate some unsteady

phenomena in boundary layers; in particular, the stability of a decelerating

laminar boundary layer. The contract monitor at AFOSR was Captain Michael S.

Francis, and the principal investigator at Flow Research was Dr. Mohamed

Gad-el-Hak.

The stability of the decelerating laminar boundary layer was investigated

experimentally and numerically. The experiments were conducted in an 18-m

towing tank, using a flat plate geometry. Flow visualization and probe

measurement experiments were conducted. The flow field was visualized and

probe measurement experiments were conducted. The flow field was visualized

using fluorescent dyes and sheets of argon laser light. The instataneous

longitudinal velocity was measured using an array of miniature hot-film probes.

A Blasius boundary layer subjected to uniform deceleration underwent a

well-defined route to complete transition. The visualization experiments

revealed the onset of two-dimensional waves that appeared after the decelera-

tion had started, three-dimensionality was then apparent and led to the

formation of hairpin vortices that lifted away from the wall and burst into

turbulence.

The formation and growth of the vorticity waves in the decelerating

laminar boundary layer were also observed using hot-film probes. The probes

were moved with the plate, and indicated high speed (relative to the plate)

fluid coming from the outerparts of the ambient fluid towards the wall region.

The probes also indicated a return to the laminar state after the deceleration

ceased. The probe measurements indicated the "degree" of two-dimensionality

of the vorticity waves observed in the decelerating plate experiment. The

waves were truly two-dimensional, and that suggests the study of their

instability in order to determine the mechanism and characteristics of the

development of three-dimensionality. If there is a well-defined transition

from laminar two-dimensional waves to laminar three-dimensional waves through

an instability process, one has indentified a major link in the transition

process.

",. . . . . . . ... .-,- "i -" .- . . . . . . - "" . .
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The unsteady boundary layer equations were solved numerically to generate

instantaneous velocity profiles for a range of boundary and initial condi-

tions. The resulting velocity profiles were inflexional, with the inflexion

point initially at the wall. The unsteady flow field was subjected to

stability analysis using the Orr-Soamerfeld equation applied to the instan-

taneous, locally parallel velocity fields. The generalized matrix eigenvalue

problem was solved using Chebyshev polynomial spectral methods (QR method).

For profiles at a given station x=xo, the stability calculation shows

that the inflexional case has smaller wavelength, smaller phase speed and

lower critical Reynolds number than the corresponding Blasius profile. All

these trends are consistent with the observations and measurements made. This

gives us confidence that the mechanics of the initial instability is well

understood. However, the observed appearance of two-dimensional instabilities

occurs earlier in the deceleration history than one would predict from the

"most dangerous" profile obtained from the stability calculations. In this

calculation we used profiles consistent with the measurement station at

x=xO . Although one cannot rule out nonlinear effects, the more likely

reason for such "earlier" instability is the non-self-similarity of the

decelerating boundary layer. Self-similarity of the flow implies that

profiles at all stations are "equivalent" in terms of stability character-

istics. When the flow is not self-similar, the profiles at different stations

are not equivalent, each profile needs to be examined separately and the "most

dangerous" station selected. The early appearance of instabilities in the

present observations suggest that there are more unstable profiles at neigh-

boring stations whose instabilities propagate to the observation station and

are seen before the local profile itself becomes unstable.

In summary then we have both flow visualization and point measurements for

the instability and transition processes of flows on decelerating plates. We

have obtained theoretical descriptions of the unsteady boundary layer and its

instability of two-dimensional laminar waves. These give a consistent picture

of the early picture of the early steps of the transition process.

The work on the stability of decelerating laminar boundary layers is a

step toward understanding the more complicated problem of the effects of

acceleration or deceleration on turbulent boundary layers. This problem has

S i



-3-

* obvious relevance in accelerating or decelerating vehicles, vehicles exper-

iencing turn and other maneuvers, rotating propellers, and many other practi-

cal situations.
- on a more basic side, the deceleration experiment offers a convenient way

* to modulate laminar and turbulent boundary layers; in a way analogous to using

pressure gradient, heating or roughness, to help determine the exact nature of

the apparent analogies between the different transition events in a laminar

boundary layer and the intermittent events that characterize fully-developed

* turbulent boundary layers, namely the bursting cycle.

Progress to date was presented at the 35th Annual Meeting of the American

Physical Society, Division of Fluid Dynamics (Appendix I). A manuscript was

submitted to the Journal of Fluid Mechanics and is included with this report

* as Appendix 11. The flow visualization techniques used during this investiga-

tion will be presented at the forthcoming Third International Symposium on

Flow Visualization. A preprint from the proceedings is given in Appendix

III. These publications very much summarize the results of the present

* investigation and are used in lieu of a final technical report.

1596R
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Abstract

The stability of a decelerating boundary layer flow is investigated

experimentally and numerically. Experimentally, a flat plate having a Blasius

boundary layer is decelerated in an 18-m towing tank. The boundary layer

becomes unstable to two-dimensional waves which break down into three-

dimensional patterns, hairpin vortices, and finally turbulent bursts when the

vortices lift off the wall. The unsteady boundary layer equations are solved

* numerically to generate instantaneous velocity profiles for a range of

boundary and initial conditions. A quasi-steady approximation is invoked and

the stability of local velocity profiles are determined by solving the

Orr-So - erfeld equation using Chebyshev matrix methods. Comparisons are made

between the numerical predictions and the experimentally observed

instabilities.
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* 1. Introduction

The classical vehicle for studying shear-flow transition to turbulence

consists of a uniform steady flow toward the leading edge of a fixed flat

plate. Somewhat downstream of the leading edge a Blasius boundary layer

* develops. In various stages and in various sequences (to be detailed below)

this Blasius layer undergoes small amplitude instability, nonlinear development

and transition to turbulence as the displacement-thickness Reynolds number

R 6 increases (Klebanoff, Tidstrom & Sargent, 1962). In effect, R6* measures

* the distance from the leading edge of the plate.

Linearized stability theory can be applied to Blasius profiles treated as

locally parallel flows (Lin, 1955; Drazin & Reid, 1981). Squire's (1933)

theorem shows that two-dimensional travelling waves, Tollmien-Schlichting

* waves, are the most .'ingerous for instability and become unstable when R6,

exceeds about 520 for long waves having downstream wave number a* - 0.30

(Jordinson, 1970). When the above Orr-Sounerfeld theory is modified to take

account of non-parallel effects in the boundary layer, the critical R 6 is

* reduced to about 420 (Saric & Nayfeh, 1975). However, as soon as nonlinear

effects are allowed, three-dimensional disturbances can no longer be excluded.

Observations in experiments having "natural" transition show that clean

two-dimensional waves are rarely attainable; rather three-dimensional structure

* is imediately seen. Efforts to "control" the disturbances have led to the

introduction of vibrating ribbons (Klebanoff, Tidstrom & Sargent, 1962)

oscillating in ostensibly two-dimensional motions. Although these ribbons are

introduced to develop two-dimensional structure, clear three-dimensional fluid

* motions are still seen. Longitudinal strips of tape have subsequently been

introduced to at least fix the spatial structure of this three-dimensional

flow (Klebanoff et al., 1962). Given the three-dimensional character of the

flow, the road to transition involves amplification of the three-dimensionality,

development of "hairpin" vortices and finally the "bursts" of turbulence.

The difficulty in the attainment of purely two-dimensional disturbances

and the seeming simultaneous occurrence of both two- and three-dimensional

waves has led to several recent attempts at wave-interaction theories (Craik,

1971, 1980; Nayfeh & Bozatli, 1979). Here, Tollmien-Schlichting waves and

oblique waves are sought that can lead, through weakly non-linear interactions,

0- i I 1 i M dli a~ l ila ,,.. il a ',, . , .,," ",m m,- .. °' . ] ' .- i . - - . . .. - .
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to resonant-like behavior that selects the observed structure prior to burst-

lug. The selection of three-dimensional structure must thus overcome the

higher growth rates (Squire's theorem) of the Tollmien-Schlichting waves.

Each of these analyses models certain features of the early transition process
*

but no one is completely satisfactory. Finally, there seems to be no theory

that is yet capable of the prediction of the hairpin vortices, although there

is substantial agreement that intensification of longitudinal vorticity gives

rise to locally inflexional (unsteady and three-dimensional) velocity profiles

(Stuart, 1965). These profiles seemingly break down (Klebanoff et al., 1962)

giving small (spatial) scale features associated with the burst.

An alternative vehicle for the study of the transition process is the

decelerating-plate experiment (Fales, 1955; Hegarty, 1958; Davis & Gad-el-Hak,

1981). Here a plate of length L moves steadily normal to its leading edge; L

is short enough that the Blasius layer remains laminar along its full length.

At time t - 0, the plate is decelerated from a constant initial speed U0 to a

new constant final speed U.. Flow visualization seemingly shows that a

sequence of two-dimensional structures, three-dimensional structures, hairpin

vortices and then turbulent bursts results. When the deceleration takes

place, the instantaneous velocity profiles are inflexional. If the inviscid

instability associated with the instantaneous inflexion point has large enough

growth rate, then there is an instability which will cause two-dimensional

waves to 6 .v in the unsteady flow (Drazin & Reid, 1981). Subsequently, there

is a breakdown (perhaps a new instability of the two-dimensional structure)

into three-dimensions, an intensification of the three-dimensional structure,

10 the development of hairpin vortices and then turbulent bursts.

The deceleration experiment differs from the fixed-plate experiment in

several respects. First, given the inflexional character of the initial insta-

bility, the two-dimensional waves would have substantially larger growth rates

than their Tollmien-Schlichting counterparts (Drazin & Reid, 1981). Hence,

there a develop a "clean", strongly two-dimensional wave field during the

initial stages of the transition process. This contrasts with the mixed two-

dimensional - three-dimensional field for the fixed plate experiment (Anders &

*Orszag & Patera (1983) have shown that a pure two-dimensional structure is
prone to strong three-dimensional instabilities.

kP1



Blackwelder, 1979). Careful point measurements are required to determine

whether this is the case. If this is the case, it suggests the study of this

instability in order to determine the mechanism and characteristics of the

development of three-dimensionality. The isolation of this problem is one of

the main advantages of the deceleration experiment over the fixed-plate

experiment. If this picture is correct and there is a well-defined transition

from laminar two-dimensional waves to laminar three-dimensional waves through

an instability process (Orszag & Patera, 1983), one has identified a major

link in the transition process. An understanding of this instability allows

one to contemplate means of interferring with the process to delay transition

or reinforcing the process to foster transition. It gives one a handle in

examining the subsequent evolution to hairpin vortices since these might be

examined through the nonlinear evolution of the three-dimensional structure.

In summary, the deceleration experiment might be one that clearly separates

two-dimensional structures from three-dimensional ones and allows analysis of

the change from one to the other.

The present investigation was undertaken to address some of the questions

raised above. Experimental and numerical investigations were carried out to

determine the mechanics of transition on a decelerating flat plate. A flat

plate was towed in the Flow Research 18-m towing tank. Visualization and

probe measurements techniques were used to study the different instabilities

resulting from decelerating the plate. The unsteady boundary layer equations

were solved numerically to generate instataneous velocity profiles for a range

of boundary and initial conditions. The stability of such profiles was deter-

mined by solving the Orr-So.mierfeld equation using Chebyshev matrix methods.

LO

*. o . - o .. . . . .
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2. Experimental Equipment and Procedure

2.1 Towing Tank System

. The 18 a long, 1.2 m wide, and 0.9 m deep towing tank and associated

equipment have been described by Gad-el-liak et al. (1981). The flat plate was

rigidly mounted under a carriage that rides on two tracks mounted on-top of

the towing tank. During towing, the carriage was supported by an oil film

which insured a vibrationless tow, so that the flow field had an equivalent

free-stream turbulence of about 0.1 percent. The carriage was towed with two

cables driven through a reduction gear by a 1.5 hp Boston Ratiotrol motor.

The towing speed was regulated within an accuracy of 0.1 percent. The main

frame supporting the tank could be tilted and levelled by adjusting four screw

jacks. This feature was essential for smooth operation of the carriage, whose

tracks are supported by the main frame. The towing tank was designed so that

flow visualization can be made from the top, sides, bottom and ends. The

bottom and side walls are made of 19 m thick plate glass with optical

* quality. The end walls are made of 38 m thick Plexiglas.

2.2 Model and Test Conditions

A unique, modularly designed flat plate was built for the present

• experiment. Figure I is a schematic of the plate, which is 2.7 a long and

1.1 m wide. The working surface is made of Plexiglas and contains two dye

slots each with four separate compartments. The working surface is placed on

a sheet of 6 mm Plexiglas that is bonded to a 13 mm honeycomb. The NOMEX

* honeycomb, covered on the bottom side with fiberglass resin, provides buoyancy

as well as bending strength. A system of cables and pulleys on the bottom

surface insures the flatness of the working surface to within 0.2 am.

Separation and premature transition at the leading edge is prevented by

I. using a 12:1 elliptic nose and an adjustable lifting flap at the trailing

edge. In the range of towing speeds of 20 to 60 cm/sec, a Blasius laminar

boundary layer is generated on the working surface.

Uniform deceleration was attained by decreasing the voltage to the

* iRatiotrol motor. The initial and final speeds were changed in the range of 60

to 0 cm/sec and the deceleration rate varied in the range I to 60 cm/sec2
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2.3 Flow Visualizaton

The transition events were made visible by novel techniques which utilized

fluorescent dye, i.e. dye which is visible only when excited by a strong light

source of the appropriate wavelength (Gad-el-Hak et al., 1979). This provided

an extra degree of freedom in observing the flow because both the dye and light

location could be controlled within the limitation of the experimental appara-

tus. A 5 watt argon laser (Spectra Physics, Model 164) was used with a

cylindrical lens to produce a sheet of light that could be projected perpen-

dicular to each of the three axes as required. The light sheets were approxi-

mately I m thick, which was sufficient to resolve the large structure within

the transitioning and turbulent regions.

Two different methods of dye injection were employed. In the first, a dye

sheet seeped into the laminar boundary layer through either of two 0.15 mm

wide, 30 ca long spanwise slots located 40 cm and 75 cm downstream of the

leading edge. The slots were milled at a 45' angle inclined towards the

trailing edge to minimize flow disturbance. Each slot was divided into four

separate sections, each with its own dye source, so the spanwise mixing and

diffusion of turbulent fluid could be studied. The dye remained on the plate

surface until an upward motion caused it to lift. In the second, discrete

lines of dye could be allowed to seep into the laminar boundary layer by

masking the spanwise slot with a 32 cm long strip of electrical tape, in which

thirty longitudinal slots, I cm apart and 0.5 cm long, were cut with a surgical

knife. The resulting dye lines were less than 0.5 m wide near the trailing

edge of the plate.

2.4 Hot-Film Probes

Miniature hot-film probes, manufactured by Thermo Systems Inc., were used

in the present investigation to measure the instantaneous longitudinal velocity

before, during and after deceleration. The probe diameter was 0.025 mm and its

sensing length was 0.25 me. The probe support was 0.9 mm diameter and 32 me

long. To obtain a velocity profile, a probe traverse powered with a stepping

motor controlled through an APPLE-I microcomputer was used. For data

acquisition and analyses, a NOVA 800 and a PRIME 750 minicomputers were used.

. . .- . - - - -
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3. Analyses
0

3.1 Theoretical Considerations

3.1.1 Basic State: The Unsteady Boundary Layer

• The flow that initially becomes unstable is an unsteady boundary layer

caused by plate deceleration. The initial and final states are Blasius layers.

Hence, one must solve (Rosenhead, 1963, and Schlichting, 1968):

4,yt + * yxy - *x*yy - *yyy (la)

*(x,,t) - 0 * 0 < x < I , t > 0 (Ib)

4x(x,o,t) - 0 0 < x < I , t > 0 (ic)
4, (X,O,t) = -Uw(t)/U 0 0 < x < 1 t > 0 (ld)

*(x,y,t) = *B(x,y) , < x < , t < 0 , y >0 (le)

Equation (la) is the non-dimensional longitudinal momentum equation, with

the familiar boundary layer approximations applied. In this equation, the

downstream coordinate x is non-diinensionalized by L, the normal coordinate y by

L/vr/i the time t by L/Uo , and the stream-function 4 by UoL&,V where the

Reynolds number R =UL . Here, Uw(t) is the speed history of the plate, *B

signifies the stream-function of the Blasius solution prior to deceleration.

The unsteady term in Equatin (la) makes the boundary layer non-similar.

The unsteady boundary-layer solution of system (1)

* -(x,y,t) (2)

*is of a combined Blasius-Rayleigh type (Stewartson, 1951).

3.1.2 Linear Stability Analysis for Locally Parallel Flow

The onset of shear instabilities is obtained by linear stability analysis

Cof the flow (2). Here * is unsteady, but one can argue (Davis, 1976) that

it is sufficient to examine the "quasi-steady" stability problem in which the

instantaneous profiles

*5 in*3 (xy;to) =- (x,y,t- to) (3)

are treated as steady, parallel flows with the Orr-Sommerfeld equation. Such
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an approximation is valid if the time rate of change of * (measured by a viscous
diffusion time) is slow compared to the rate of growth of disturbances of

(measured by a convection time). This is guaranteed if the steady-flow Reynolds

number is sufficiently large. The following Orr-Sommerfeld system defines a

critical value of R,* for each profile (parameterized by t0):

( 2 _ a2)2 * i [(c1U(Y)_W)(D2 - 2) * 2U 4a2

*(o) -o , (4b)

D (o) - o ,(40)

*(w) a o , (4d)

• where we have written the normal modes as follows:

)- (y)e(ax-wt). (5)

dy* Here a is the downstream wavenumber and wo is the complex frequency; D -=Ey

and R is related to the standard displacement thickness Reynolds number R6. by:

jrn~Cur\~I7,(6)

-2 Uw 6*
R6* RU 0L(7

0

Given that we have used the quasi-steady assumption, Squire's theorem

*D applies and allows us to confine our attention to two-dimensional disturbances

only. This is reflected in the form (5).

There is a "most dangerous" profile that corresponds to to - toc; where tOc

is a measure of the time delay between deceleration and the appearance of the

* first two-dimensional instability. Presumably, the instability is due to the

inflexional nature of the profile. Here the point of inflexion at t - 0 is at

the wall and moves outward on a diffusion time scale. Its location is y a ylp;

if y1p is too small, viscous effects stabilize the profile. If ylp is too

large, the inflexion point is in a region where U is very small so the insta-

bility is is not important. The "most dangerous" profile corresponds to an

intermediate value of ylP and hence of to.
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3.2 Numerical Methods

A code was developed to solve the unsteady boundary layer Equation (1) as

follows. First, the flow variables are expanded in mapped Chebyshev poly-

nomial expansions. Thus, the variable y is napped to a new variable Z using:

S +iZ (-l < Z < 1) (8)

Y _A-Z

where S is a suitable scale parameter. In terms of Z, y derivatives take the

form:

8F _ (A-Z) 2 F (9)
ay S(l+A) z

Second, the various functions are expanded in Chebyshev polynomial series

in Z:0
N

F(z) - n (z) . (10)
n-=0

H Mere the nth Chebyshev polynomial T (Z) is defined by:

T (Z) - cos (n arccos Z), (11)n

for all non-negative integers n (see, e.g. Fox & Parker 1968). Some examples

0are T() - , T1(Z) = Z, T2(Z) -2Z2-. Also, if F(z) is represented as in
(10), then:

F'(Z) - f ) Tn(z), (12)Sn0

with: f(I) - f(1) = 2nfn (n > 1) (13)
n-l n+l n

Third, the boundary layer equation is solved by discretizing x and t using

Crank-Nicolson implicit space and time differencing, in which the difference

approximations:

( I - (14)AF1 M ~F[(k+J)At]-F(k~t) (4( at,, 1)' At At

B( ap (j)AXV-jiax) (5

')(I4) Ax

1" 2.-.... . .... .



* are used. At the centered points (j + 1/2)Ax and (k + 1/2)bt, these dif-

ference approximations are second-order accurate in both x and t. The fact

that (14) and (15) involves functions at the discrete points (j 4 1)Ax and

(k- l)t implies that implicit equations must be solved for the dependent

* variables. These implicit equatins are set up using the Chebyshev derivative

matrix operator D defined by:

N

U (Df) T (Z.) (16)

nrp0

where Z. are the Chebyshev collocation points:

33 Zi - cosl *- (17)
j N "

The resulting equation for the stream-function is nonlinear. This non-

linear equation is solved by quasi-linearization (Newton's method). The

resulting iterative scheme is:

A D- - (q)x 1  ) D I

0 Y(x j+l3t k+ ) - If(xj'tk) - T r 't k+ 1)I D2] - D

SIX [() y(xj'tk) + Vyy(jl'tk) + Yyj( l( ' tk k)) 1

Iq(q) )
yy (xj ) tx.t1)

A l(q~l) (q) 't

- (xjtk+) (19)+1)

T~~ ~ *j ~ .k x+- tk )* - tk . )

t. - .

,,[V(xj,Itk)* " y(xj-ltk) -y(xj, k ) -yy (xj tk 1) 4

(q)2 (q

(qyy (jt*l) 
( YJk y ~ ~l y ~ '19)



Typically, only a few iterations are necessary to converge. The advantage of

this method is that it is unconditionally stable.

At the inflow location xo, Blasius flow is impostd. The Blasius equation

is'solved by the Chebyshev spectral scheme outlined above, also using Newton's

method.

At each downstream location, the flow field can be subjected to stability

analysis using the Orr-So~merfeld equation applied to the instantaneous velo-

city profile. The Orr-Somwerfeld system (4) is solved using Chebyshev poly-

nomial spectral methods on the same Zj grid described above. The Chebyshev

approximations permit simulations of very high accuracy. The Orr-Soumerfeld

eigenvalue problem for temporally unstable mode is formulated as a generalized

matrix eigenvalue problem of the form:

A 0 - X) 9. (20)

The eigenvalues of the resulting matrix problem are found by first reducing

the problem (20) (with a singular matrix B) to a standard eigenvalue problem

of the form Ax - Xx with scalar X and then finding the eigenvalues of this

problem using the QR method (Orszag, 1971). If a good guess for an eigenvalue

is available, then the code is able to avoid the global QR computation by

using a local itiverse Rayleigh iteration method to efficiently improve the

guess. In all cases, the matrix method is designed so that the only unstable

modes that are computed (either globally or locally) are approximations to

physical modes; there are no spurious unstable modes. This feature is achieved

by writing Orr-Soumerfeld equation in such a form that the numerical method

would give a stable forward time-integration method for the linearized Navier-

Stokes equations, so spurious unstable modes (that would lead to numerical

instablity in time) cannot be present.

The code also has the optional features of obtaining the minmum critical

Reynolds number at a given x-station and the neutral curve at the given

i-station. These computations are done using variants of Newton's method.

Thus, quick convergence of a guess to the neutral curve Im w - 0 is gotten

by the iterative method:

)(21)

W W . . . .U)
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* mBt 9 a (22)

U n 2 2

Im W ai a/m

n* -/ mW 2 +, a Im (23)

* Once one point on the neutral curve is obtained, additional points on it are

obtained by using as a first guess a point of the form:

-0 q--Imw , (24)ai

q wm , (25)
CL

which is obtained by moving along the tangent to the neutral curve at the

* computed point.

The minimum critical Reynolds number program also uses Newton's method.

Here the iterative equations are:

a %n+1 a OLn + A , (26)

R m . +AR. (27)

Im Im inAa + Is w (c A - 0 (28)

aIs Wei a w Ac 2  I=wc W (29)

* In summary, the above described code uses an unconditionally stable,

spectral, accurate integration program for the solution of the time-dependent

non-self-similar boundary layer equations and both global and local spectral

methods for the solution of the Orr-Sommerfeld equation. The code is reason-

* ably robust, having significant difficulty only in cases when the flow

reverses.

0, o • .. , ° . - . o
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4. Results and Discussion

4.1 Flow Visualization Results

When the Blasius boundary layer was subjected to a uniform deceleration, a

most interesting series of events was observed. Figure 2 represents six

0 selected frames from a movie of the observed instabilities. The left-hand side

of each frame was at x - 92 cm, and the right-hand side was at x - 108 cm.

Fluorescent dye seeped into the laminar boundary layer through the spanwise

slot, and was illuminated by a horizontal sheet of laser light at y - 0. The

0 thickness of the laser sheet was about 1 sm, several times the thickness of

the undisturbed dye sheet. At a uniform speed of 40 cm/sec the boundary layer

was of Blasius type (see Section 4.2), and the dye sheet appeared smooth and

uniform as shown in Figure 2a. The plate was then decelerated uniformly to a

speed 30 cm/sec in 5 seconds. Two seconds after the deceleration had started,

the two-dimensional pattern depicted on Figure 2b was evident. The alternating

bright and dark bands are consistent with the passing of two-dimensional vorti-

city waves. The wavelength of the disturbance was about 5 to 6 boundary layer

thicknesses 6 as compared to a wavelength 83 for a Tollmien-Schlichting

wave occurring in a non-decelerating Blasius boundary layer having the same

Reynolds number. The wave phase-speed relative to the plate was about

10 cm/sec as compared to 14 cm/sec for the corresponding Tollmien-Schlichting

wave. The two-dimensional waves developed a three-dimensional pattern as

shown on Figure 2c. This pattern evolved into several hairpin vortices

characterized by the bright triangles in Figure 2d. Since the thickness of

the sheet of light is larger than the thickness of the undisturbed dye, bright

regions indicate lifting and accumulation of dye. The vortices appeared in

several regular rows with a spanwise distance between two vortices of about

56 (or about the same as the wavelength of the two-dimensional waves). The

patterns continued to convect towards the trailing edge of the plate, and new

ones appeared near the leading edge. Side views of the hairpin vortices

indicated that their heads moved away from the wall. When the vortex head

reached a height of about half a boundary layer thickness, it then burst into

turbulence as shown in Figure 2e. The turbulent regions grew in size as shown

in Figure 2f, and adjacent bursts coalesced. Shortly afterward, the dye

pattern indicated that the flow over the entire plate was turbulent.
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*@ The experiments where repeated with different initial velocities in the

range 20 to 60 cm/sec and different deceleration rates in the range 1 to

60 cu/sec2 . The same sequence of events described above was observed in all

runs. The length scales were not sensitive to the changes in the deceleration

* rate. However, the time to complete the transition process was approximately

inversely proportional to the deceleration rate. The stages of transition are

summarized in the schematic depicted in Figure 3.

To gain more physical insight into the transition process in the deceler-

• ating boundry layer, the above described sequence of events was also observed

using discrete lines of dye embedded into the laminar boundary layer

(Section 2.3). Figure 4 shows six selected frames from a movie of a typical

run. Before decelerating the flat plate, the dye streaks were parallel to the

* flow and remained on the plate surface. The plate was then decelerated from a

speed 40 cm/sec to a speed 30 cm/sec in 5 seconds. A short time after the

deceleration had started, the two-dimensional waves with their fronts perpen-

dicular to the dye streaks appeared as alternating bright and dark bands on

* each streak as shown in Figure 4a. The waves moved in the same direction,

relative to the plate, as the ambient fluid. As the amplitude of these

two-dimensional waves increased, as evident by the intensification of the

contrast between the bright and dark bands, three-dimensionality developed,

* the dye lines began to show a waviness that has the same wavelength as that of

the original two-dimensional waves (Figures 4b and 4c). Liepmann, Brown and

Nosenchuck (1982), in observing a somewhat similar transition process initiated

by a dynamic-heating technique, speculated that the waviness of the dye lines

* indicates a local development of longitudinal vorticity corresponding with the

local warping of the initially parallel vortex lines. The dye became con-

centrated in regions that has been lifted away from the wall into a higher-

velocity region of the boundary layer, thereby catching up with that released

0 at an earlier time. The transition process continued as before until the dye

pattern indicated turbulent flow over the entire plate (Figures 4d-4f).

4.2 Hot-Film Probe Measurements

• Miniature hot-film probes were used to measure the instantaneous longi-

tudinal velocity in the decelerating boundary layer. The probes were moved

4,
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* with the plate, so that all velocities recorded were relative to the plate.

Before the deceleration started, the boundary layer was of Blasius type as

shown on Figure 5. The velocity profiles are plotted in the normal boundary

layer coordinates, where Lhe ambient speed U0 is used as a velocity scale and

• the length scal %/;;-is proportional to the laminar boundary layer thickness 6.Us

The Reynolds number for the two runs shown on Figure 5 was Ux - 6.7 x 105

(R6* - 1400). The solid line in the figure is a numerically generated

Blasius profile.

* Figure 6 represents the instantaneous longitudinal velocity U(y) at

y/6 - 0.1, for a plate decelerated from an initial velocity U0 M 40 cm/sec

to a final velocity U., = 32 cm/sec in a time t* - 4.6 seconds. The two arrows

on the abscissa represent the starting and ending of deceleration. Initially,

the flow is laminar and the velocity at this particular elevation is propor-

tional to the towing speed. A short time after the deceleration starts, a

sinusoidal instability is observed. Its peak to peak amplitude grows rapidly

as shown in Figure 6. Characteristic turbulent fluctuations are then observed,

* followed by a return to the laminar state when the plate is again moving at its

new constant towing speed. The turbulence, on the average, brings high speed

fluid from outside the boundary layer to replace the low speed fluid near the

wall. A second probe at y/6 - 1 recorded the signal shown in Figurv 1, It

* is seen that the turbulent fluctuations, on the average, bring low speed fluid

from the wall region to replace the high speed fluid at y/6 - 1. Close

inspection of the instability waves near the wall and away from the wall

reveals that the two wave trains are out of phase, consistent with a spanwise

vortical motion.

The instability waves appeared from the visualization experiments to be

two-dimensional initially. To check the "degree" of two-dimensionality of

these vorticity waves, three hot-film probes were located at y/6 - 0.1 at the

same streamwise position x/L - 0.8, with a spanwise separation of two boundary

layer thicknesses. The plate was decelerated from 40 cm/sec to 30 cm/sec in 5

seconds. The stresamwise velocity signals from all three probes are plotted in

*The exact delay time between the start of deceleration and the onset of in-

stability is difficult to determine, since the observed waves are infinitesimal
at first.

4W
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Figure 8. The waves are quite two-dimensional, although they have grown to

* relatively very large amplitude. Thus, the development of a "clean," two-

dimensional wave field during the initial stages of the transition process on

the decelerating flat plate contrasts with the mixed two-dimensional/three-

dimensional field for the fixed plate experiment (Anders & Blackwelder, 1979).

* The probe measurements are consistent with the qualitative visualization

experiments. The "relaminization" observed in the hot-film signal after the

plate returns to a uniform speed does not show in the dye pictures, however,

since the dye delineates the regions of the flow which have been marked by it,

* and at any instant of time it mainly gives information which is time-integrated

over the history of the flow from the time of release of the dye.

4.3 Numerical Results

* The unsteady-boundary-layer system (1) was solved by expanding the flow

variables (dependence on y) in mapped Chebyshev polynomal expansions, and

discretizing x and t using Crank-Nicolson implicit space and time differencing.

The code uses an unconditionally stable, spectral, accurate integration program

* for the solution of the time-dependent non-self-similar boundary layer

equations. The code is reasonably robust, having significant difficulty only

in cases when the flow reverses so the boundary-layer approximation is not

valid.* This occured for deceleration rates larger than 4 cm/sec2
.

* The resulting velocity profiles for a typical deceleration rate are pre-

sented in Figure 9. Here, the initial and final speeds were 40 and 22.5 cm/sec,

respectively, and the deceleration rate was 3.5 cm/sec 2 . At twO, the velocity

profile is of (inverted) Blasius type with the inflexion point at y-0. The sub-

*p sequent velocity profiles are inflexional, with the point of inflexion moving

away from the wall on a viscous-diffusion-time scale. At large times, a new

Blasius profile is established after the inflexional point returns back to the

wall.

*! The unsteady boundary layer equation was solved for a range of initial and

boundary conditions comparable to the experimental runs. Since the solution is

non-self-similar, it is obtained at selected streamwise locations. The migra-

tion of the inflexion point for seven different deceleration rates is shown in

*Flow reversal changes the parabolic partial differential equation to an ellip-
tic one requiring both inflow and outflow boundary conditions.
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Figure 10. The position yW(t) of the inflexion point is normalized with the

length scale-h, and the time t is normalized with the deceleration time t*.
VKR

The initial speed was U° - 40 cm/sec, and the plate was decelerated in a

time t* - 5 seconds to a final speed Uo - 37.5, 35.0, 32.5, 30.0, 27.5, 25.0

and 22.5 c/sec. The dip in the curve corresponding to a final speed

U. - 22.5 cm/sec is an indication of the incipient breakdown of the

numerical simulation as mentioned above. The inflexion point migrates farther

from the wall for high deceleration rate. It reaches a particular position

above the wall in a time that is inversely proportional to the deceleration0
rate. This is consistent with the experimental observation that transition

occurs sooner for higher deceleration rates, provided that there is a "most

dangerous" location above the wall for the inflexion point.

The flow field resulting from solving the unsteady boundary-layer equation

was then subjected to stability analysis using the Orr-Sommerfeld equation

applied to the instantaneous velocity profiles. The linear stability equation

was solved using Chebyshev polynomial spectral methods (Orszag, 1971). As

* expected, the inflexional velocity profiles yielded lower critical Reynolds

numbers and larger growth rates in the unstable region as compared to the

Blasius profile. The neutral stability curves during a typical deceleration

are depicted in Figure lIla, and enlarged in Figure llb. The plate was decel-

erated from an initial speed 40 cm/sec to a final speed 30 cm/sec in 5 seconds.

At t-0, the neutral stability curve for a Blasius profile resulted. As the

plate decelerates, the inflexion point migrates away from the wall and the

neutral stability curve moves toward the left, reaching its foremost left

* position at the end of the deceleration period (t-5 sec). Note that the

inflexion point for this run reaches its maximum distance from the wall at

t - 6.25 sec (see Figure 10). Finally, the inflexion point moves toward the

wall and the neutral stability curve moves back toward the neutral curve of

the Blasius profile. The unstable modes for the inflexional velocity profiles

tend to have larger wavenumbers (smaller wavelengths) as compared to the

unstable modes for a Blasius velocity profile.

The critical Reynolds number for a particular velocity profile is the

* smallest value of Reynolds number for which an unstable eigenmode exists. The

behavior of the critical Reynolds number for seven different deceleration rates

Oo- . .. 4.. .... .... .. . .. .
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is shown in Figure 12. The critical Reynolds number R€ is normalized with

the critical Reynolds number for a Blasius velocity profile (RcIlasius - 520),

and the time t is normalized with the deceleration time t*. The plate was de-

celerated from an initial speed Uo - 40 cu/sec to a final speed Um - 37.5, 35.0,

32.5, 30.0, 27.5, 25.0 or 22.5 cm/sec in a time t* - 5 seconds. The critical

Reynolds number decreases with time then tends back to the Blasius value as the

inflexion point migrates back toward the wall. The lowest critical Reynolds

number decreases as the deceleration rate increases, and occurs at t/t* - 1.

For a deceleration rate of 3.5 cm/sec 2 , the lowest critical Reynolds number

is about 20Z of the corresponding Blasius value.

The critical Reynolds number indicates qualitatively the "degree" of insta-

bility for a particular experimental condition, vhere the actual Reynolds

number usually far exceeds the critical one. For a certain decelerating

boundary layer, the Reynolds number changes with time at a prescribed

streamwise location on the plate. Of particular interest to the experiment is

then to determine, at a particular location on the plate, the most unstable

mode at each instant of time. Vertical scans of the stability diagrams were

conducted at the experimental Reynolds number at x - 160 cm, corresponding to

a typical observation station. The results are depicted in Figures 13 through

16.

The imaginary part of the eigenvalue w. indicates the exponential growth
i

(or damping) of the disturbance amplitude. Figure 13 shows the growth rate wi

versus wavelength X (2 7) for the unstable modes as a plate is decelerated
from 40 ca/sec to 30 cm/sec in 5 sec. It is seen that, for each velocity pro-

file, there exists a "most-dangerous" wavelength corresponding to the maximum

growth rate. As time increases, this most-dangerous wavelength decreases

slightly. This is consistent with the experimental observation (Section 4.1)

that the observed wavelength in the present decelerating plate experiment is

shorter than the Tollmein-Schlichting wave in a Blasius boundary layer. In

particular, at t - 5 sec, the most-dangerous wavelength is about 6.5 ca,

whereas at t-0, it is 8 ca. The computations were repeated for a plate

decelerated from 40 cm/sec to 25 cm/sec and 35 cm/sec in 5 sec. The most

dangerous wavelength at the end of the deceleration period varied in the range

of 5 to 7 cm, decreasing as the deceleration rate increased. This relative

insensitivity of the length scale to changing the deceleration rate was

observed in the flow visualization experiments (Section 4.1).



Unlike the wavelength, the growth rate of the disturbance depends strongly

on the deceleration rate. The maximum growth rate during deceleration for all

three deceleration rates (1, 2 and 3 cm/sec2) is shown in Figure 14. It

increases as the deceleration takes place reaching a maximum at the end of the

deceleration period t - 5 sec, then declines moving back towards the Blasius

value. At a particular time during the deceleration, the growth rate

increases as the deceleration rate increases. At the end of the deceleration

period, the maximum growth rate for a plate decelerated to a final speed

Um - 25, 30 and 35 cm/sec is about 5, 4 and 2 times, respectively, that

for a Blasius velocity profile.

The real part of the eigenvalue wr is proportional to the phase velocity

of the two-dimensional disturbance cp (- W). Figure 15 shows the phase velo-

city versus wavelength for the unstable modes for different times during a de-

celeration from 40 cm/sec to 30 cm/sec in 5 sec. For a particular wavelength,

the phase velocity decreases as the plate is decelerated, reaching a minimum

at the end of the deceleration period. The phase velocity for the most-

amplified disturbance during deceleration is shown in Figure 16, for three

deceleration rates 1, 2 and 3 cm/sec 2 . Consistent with the flow visuali-

zation results, the phase velocity for the inflexional velocity profiles is

less than that for the Blasius boundary layer. For a plate decelerated to a

final speed 25, 30 and 35 cm/sec and at the end of the deceleration period

(t - 5 sec), the phase velocity for the most-amplified disturbance is 63, 74

and 87 percent, respectively, of that for a Blasius velocity profile.

0
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5.Concluding Remarks

The stability of the decelerating laminar boundary layer was investigated

experimentally and numerically. The experiments were conducted in an 18-m

towing tank, using a flat plate geometry. Flow visualization and probe

measurement experiments were conducted. The flow field was visualized using

fluorescent dyes and sheets of argon laser light. The instantaneous longi-

tudinal velocity was measured using an array of miniature hot-film probes.

A Blasius boundary layer subjected to uniform deceleration underwent a

well-defined route to complete transition. The visualization experiments

revealed the onset of two-dimensional waves that appeared after the de-

celeration had started, three-dimensionality was then apparent and led to the

formation of hairpin vortices that lifted away from the wall and burst into

turbulence.

The formation and growth of the vorticity waves in the decelerating laminar

boundary layer were also observed using hot-film probes. The probes were moved

with the plate, and indicated high speed (relative to the plate) fluid coming

from the outerparts of the ambient fluid towards the wall region. The probes

also indicated a return to the laminar state after the deceleration ceased.

The probe measurements indicated the "degree" of two-dimensionality of the

vorticity waves observed in the decelerating plate experiment. The waves were

* truly two-dimensional, and that suggests the study of their instability in

order to determine the mechanism and characteristics of the development of

three-dimensionality. If there is a well-defined transition from laminar two-

dimensional waves to laminar three-dimensional waves through an instability

* process, one has identified a major link in the transition process.

The unsteady boundary layer equations were solved numerically to generate

instantaneous velocity profiles for a range of boundary and initial conditions.

The resulting velocity profiles were inflexional, with the inflexion point

* initially at the wall, moving upward on a diffusion time scale and finally

going back to the wall. The unsteady flow field was subjected to stability

analysis using the Orr-Somerfeld equation applied to the instantaneous,

locally parallel velocity fields. The generalized matrix eigenvalue problem

* was solved using Chebyshev polynomial spectral methods (QR method).
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For profiles at a given station x-x, the stability calculation shown

that the inflexional case has smaller wavelength, smaller phase speed and

lower critical Reynolds number than the corresponding Blasius profile. All

these trends are consistent with the observations and measurements made. This

gives us confidence that the mechanics of the initial instability is well

* understood. However, the observed appearance of two-dimensional instabilities

(say, in a 5 sec deceleration run) occurs earlier in the deceleration history

(e.g. at t a2 sec) than one would predict from the "most dangerous" profile

obtained from the stability calculations (for which one would have

tw5 sec). In this calculation we used profiles consistent with the measure-

ment station at xImi0. Although one cannot rule out nonlinear effects, the

more likely reason for such "earlier" instability is the non-self-similarity

of the decelerating boundary layer. Self-similarity of the flow implies that

profiles at all stations are "equivalent" in terms of stability character-

istics. When the flow is not self-similar, the profiles at different stations

are not equivalent, each profile needs to be examined separately and the "most

dangerous" station selected. The early appearance of instabilities in the

present observations suggests that there are more unstable profiles at

nei.ghboring stations whose instabilities propagate to the observation station

and are seen before the local profile itself becomes unstable.

In sumary then we have both flow visualization and point measurements for

the instability and transition processes of flows on decelerating plates. We

have obtained theoretical descriptions of the unsteady boundary layer and its

instability to two-dimensional laminar waves. These give a consistent picture

of the early steps of the transition process.

The work on the stability of decelerating laminar boundary layers is a

step toward understanding the more complicated problem of the effects of

acceleration or deceleration on turbulent boundary layers. This problem has

obvious relevance in accelerating or decelerating vehicles, vehicles

experiencing turn and other maneuvers, rotating propellers, and many other

practical situations.

On a more basic side, the deceleration experiment offers a convenient way

to modulate laminar and turbulent boundary layers; in a way analogous to using

pressure gradient, heating or roughness, to help determine the exact nature of
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the apparent analogies between the different transition events in a laminar

boundary layer and the intermittent events that characterize fully-developed

turbulent boundary layers, namely the bursting cycle.
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VISUALIZATION TECHNIQUES FOR STUDYING

TRANSITIONAL AND TURBULENT FLOWS*

M. Cad-el-akc, R. F. Blackwelder** & J. J. Riley

Flow Research Company

Kent, WA 98032

A comparative analysis of different slot injection techniques vere used

to visualize a transitional boundary layer. The methods included injecting

either conventional dye, a fluorescent dye excited by a sheet of laser light,

or reflecting micro-platelets which tend to align themselves with the instan-

taneous shear stress in the fluid. All three techniques were used to visualize

two different transitional flow fields; a turbulent wedge behind a single

roughness element and a turbulent spot developing in a laminar boundary layer.

Each method gives a different, unique and complementary view of the flow

structure.

1. Introduction

Flow visualization is the oldest method known for the study of fluid

mechanics. Hlistorically, visualization methods have included fluid marker and

particle techniques. In the former method, a colored marker is injected into

the flow, with as little disturbance as possible, and the resulting streak

lines or sheets are observed to learn more about the flow field. In the second

technique, particles sufficiently small to follow the fluid motion are placed

in the flow field and their trajectories are followed to obtain information

about the fluid displacements and velocities. The major disadvantage of the

first method is that the observed marker illustrates the integrated history of

its motion and it is difficult to glean information about the present velocity

field. Consequently the observed results are often strong functions of the

point of injection. by tracking individual particles, on the other hand,

*This work is su-pported by the Air Force Office of Scientific Research,
Contract No. 749620-82-C-0020 and the Office of Naval Research, Contract
Uo. 1100014-81-C-0S.53.

**Permanent address: Department of Aerospace Engineering, University of
Southern California, Los Angeles CA 90089-1454.



larger scale correlated motions associated with eddy structures are often

overlooked because the particle responds equally well to the smaller scale

uncorrelated motions.

During the past few decades many improvements have been made in flow vis-
ualization. In liquids, the use of photochromic dyes, fluorescent dyes, hydro-

gen bubbles, and related methods have been instrumental in increasing our

understanding of low-speed fluid mechanics. Recently, a new visualization

method of eddy structures in a transitional flow was reported by Carlson,

Widnall and Peeters [11. They filled a 0.6 cu x 80 cm x 410 cm channel flow

with titanium-doxide-coated mica platelets which were 10- 2 01 in diameter, 3-411

thick, and had a specific gravity of 3. These disks were sufficiently small

that they presumably align themselves with the instantaneous shear stress

present in the fluid as long as the length scales of the eddy structures are

greater than the dime'-4 ons of the platelets. Although the mice particles are

larger, the technique is similar to the aluminum flakes used by Cantwell, Coles

and Dimotakis 121.

In the channel flow study of Carison at al. 1I) a transitional turbulent

region embedded within the laminar fhow field was observed to grow as it moved

downstream similar to the turbulent spat in a transitional laminar boundary

layer. Waves were observed to emanate tfrom the turbulent region into the sur-

rounding laminar flow. The waves were oblique with respect to the mean flow

and were the predominate structure observed in the photographs. Since they had

not been observed before using more conventional visualization techniques, it

was conjectured that similar wave patterns may be present in a transitional

boundary layer flow. Thus the present comparative study in boundary layers was

undertaken to determine if this new technique might divulge some new informa-

tion on turbulent regions in a transitional boundary layer.

2. Experimental Apparatus

The visualization tests were conducted in a towing tank that is 1.2 m
wide, 0.9 a deep and 18 a long as described by Gad-el-Rak, Blackvelder and

Riley 13). The flat plate plexiglas test model was 210 ca long and 106 cm

wide and had a trailing edge flap to adjust the stagnation point on the working

side of the elliptical leading edge. The streamwise coordinate, z, is taken

from the leading edge, y is perpendicular to the plate and a is the spanwise

coordinate. The plate was aerodynamically smooth so that natural transition

only occurred at Rea ,106. Turbulent wedges were formed behind 1.0 cm diameter,

0.6 cu high cylindrical roughness elements placed at a - 120 and 128 ca.
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Turbulent spots were initiated by small momentary jets of fluid emanating from

a 0.5 -m bole 46 cu downstream of the leading edge. The plate was towed at

25 cm/sec in the experiments reported here.

For the mica platelets experiments, a water suspension of the platelets

ywas made at a concentration of 2Z by weight. This suspension and the dyes

were injected through two different slots located at x - 75 cm and x a 123 cm.

Each slot was inclined 45* with respect to the downstream direction and had a

slot width of 0.4 on. The upstream slot spanned 50 cm and the downstream slot

was 15 cu wide.

In the fluorescent dye experiments, a dye (trade name Fluorescein) was

excited by a 5 watt argon laser (spectra Physics, Model 164). A sheet of light

1 am thick in the x-z plane was produced by reflecting the laser beam from a

small mirror which oscillated at 500 Hz. Flood light illumination was used

for the conventional food coloring dye (Red dye No. 40). Six 600 watt flood

lights were projected onto the plate from an acute angle of 45* with respect

to the y axis. For the platelets, four 600 watt lamps were aligned parallel

to the x axis on each side of the tank at y 2! 0.

Photographic records of the flow fields were obtained using 35 -m cameras

and also 16 em cine films. Both cameras were located perpendicular to the

plate over the desired streamwise location.

3. Turbulent Wedge Results

Figures 1, 2 and 3 show the flow field behind roughness elements for the

conventional dye, the platelet suspension and the Fluorescein dye respectively.

In all three cases, one roughness element is located 3 cm upstream and one
5 ca downstream of the dye slot. The roughness element introduces a horseshoe
vortex into the flow field with its legs downstream of the element. First,

consider the element positioned after the injection of the marked fluid. The

horseshoe vortex removes the dye from the wall directly upstream and to the

sides of the element. This fluid is displaced upward as the vortex continues

to wrap the marked fluid around its legs, leading to a different visualiza-

tion In all three cases. In the conventional dye method, Figure 1. an inte-

grated view across the entire boundary layer is seen. The marked fluid gives

the appearance that the wake is narrower 3-6 diameters downstream than is

indicated by the other figures. Further downstream, filaments of dye are seen
crossing the wake at oblique angles. In Figure 2, the additional platelets in

the edges of the wake 3-6 diameters downstream are aligned by the stress

imposed by the legs of the vortex. Being aligned perpendicular to the light



aource provides greater reflection and hence a sharper contrast in that region.

In Figure 3, the sheet of laser light is 5 mm above the vail. Consequently no

visual results are obtained until the flow field elevates the Fluorescein to

that location. In addition, the relaxation time of the stimulated dye is such

shorter than the time scales in the flow, so only dye within the laser sheet is

seen. The turbulent structure observed in Figure 3 must be associated with the

* filaments of dye seen in the integrated view of Figure 1.

The roughness elements placed upstream of the injection #lot create a dif-

ferent image of the vake. In all three figures, this configuration shows that

the wake in much more turbulent than it appears behind the downstream element

even though the wake structure must be similar in both cases since their

* Reynolds numbers are comparable. This results from the marker being injected
into the flow after it had become turbulent in contrast to the previous case

in which the marker was injected into a laminar flow that subsequently became

turbulent. In all three figures, the horseshoe vortex around the downstream

element removed the marked particles from the wake region prior to transition

* thus creating a wake devoid of marked particles. The contrast in each figure

illustrates that the present location of the marker is a strong function of its

past history which can make it difficult to obtain quantitative data from such

photographs.

4. Turbulent Spot Results

When initiated from a point source in an unstable laminar boundary layer,

it is well documented that a turbulent spot maintains an arrrowhead shape as

it grows downstream. Examples of this classical phenomenon are shown in
figures 4, 5 and 6 for the conventional dye, the platelet suspension and the

Fluorescein dye respectively. The classical arrowhead-shaped patch of turbu-
lance is readily apparent in all three figures; however each technique displays

different features. In Figure 4, the dye provides a spatially integrated view

of the turbulent spot, without any details of its internal structure. The tips

of the spot, i.e. the spanwise extremities, are relatively darker because they

are continually engulfing new marked fluid as the spot moves downstream. In

* the triangular-shaped region behind the spot where the velocity profiles are

stable 14), thin streise filaments of dye are observable. These are felt

to be remnants of streauise vortices associated with the spot.
The eddy structure within the spot appears sore vividly when visualized

with the platelet solution as *een in Figure 5. The approximately instantaneous

response of the mica platelets is particularly more evident around the leading



edges of the spot, where much more details of the breakdown of laminar fluid

into turbulence are observed. In the calmed region, the elongated streauvise

streaks are present at least 1-1/2 spot lengths upstream as in Figure 4. Since

the streaks disappear approximately one second after the spot passage, their

disappearance may be due to the relaxation time of the platelets rather than

the disappearance of a strong stress associated with streamwise vortices. The

0 regions near the tips appear to contain more randomness suggesting a greater

mixing. Similar results were also found by Carlson et al. III in turbulent

regions developing in plane Poiseuille flow.

A cross sectional slice of the spot visualized by a sheet of light roughly

5 = above the wall is seen in Figure 6. As in Figure 3, no manifestation of

* the spot is evident until the dye has been elevated into the light sheet.

W~hen the light sheet was lover, as in Gad-el-Hak et al. 131, evidence of the

trailing streaks was quite evident. Since they are not as prominent in

Figure 6, the streaks must only occur very near the wall. Near the edges of

the spot the dye lines are sharp, indicative of the initial breakdown into

chaotic motion. Toward the middle of the spot, the dye becomes more diffused
because the turbulence there is older and more mixing has occurred.

The platelet solution vas used to obtain the magnified view of the nose

of the spot seen in Figure 7. A higher flow rate through the injection slot

was used than for Figure 5; consequently a different impression of the

turbulent spot is obtained. Disturbances in the laminar flow are seen before

the breakdown into turbulence becomes apparent. With suspensions; having higher

concentrations of platelets, these disturbances are seen further upstream as

found by Cantwell et al. [2]. Inside the spot, greater evidence of the turbu-

lence is seen in Figure 7 than in Figure 5.

Figure 8 shows a magnified section of the spot's nose at an elevation of

* 5 mm using Fluorescein dye. Greater detail of the turbulent eddies can be seen

in this slice through the spot compared to the integrated view in Figure 7.

Since the dye has not been elevated into the sheet of laser light, the precur-

sive disturbances ahead of the spot are not seen here.

*5. Conclusions

Comparing results from the three marker techniques illustrate that each

responds differently to the same flow field. The conventional dye is strictly

passive and always provides a spatially integrated view of the observed

structure. Thus, details of the internal structure of the flow field are

* difficult to obtain. The Fluorescein dye disperses in the same manner as the
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conventional dye, but is only observed when excited by light of a given wave- j
length. By using sheets of such light, cross-sectional views of the flow can

be obtained, yielding greater detail of the eddy structures. The platelet

suspension is dispersed as are the two dyes. But the platelets align them-

selves with the shear stress imposed upon them by the flow, thus giving a more

instantaneous view of the stress within the flow field. Since they reflect

the imposed illumination, the platelet results also depend, to some extent, on

the direction of the illumination.

The visual images obtained by all three techniques are sensitive to the

flow rate at the injection slot. The only known systematic study of this par&-

meter has been by Oldaker and Tiederman [51 during a study of low-speed streaks

in a turbulent flow. Comparison of Figures 5 and 7 indicate that this parameter

is quite important in interpreting visual results and understanding the eddy

structure in the near vail region. For example, with the low injection rate in

Figure 5, stremwise streaks are observed under the nose whereas with the higher

injection rate in Figure 7, eddy structures similar to Falco' pockets [61 are

seen.

Lastly, no wave structure comparable to that reported by Carlson et al.

[1] was found surrounding a turbulent spot in a laminar boundary layer suggest-

ing that they may be only manifested in the transitional channel flows and not

in boundary layers. However, this result can not be regarded as conclusive

because the waves may be on a higher elevation above the wall than the slot

injected particles and thus would not be visualized. The trailing waves of

Wygnanski, Raritonidis and Kaplan [7) were also not observed for possibly the

same reason.
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